In this article, you will learn how to Change Data Type for one or more columns in Pandas Dataframe
In this article, you will learn how to changing Data Type for one or more columns in Pandas Dataframe.
import pandas as uc
d = uc.DataFrame({
'A': [1, 2, 3, 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'e', 'f'],
'C': [1.1, '1.0', '1.3', 2, 5, 10] })
# converting all columns to string type
d = d.astype(str)
print(d.dtypes)
Pandas will always store strings as objects.
Alter column data type from Int64 to String.
import pandas as pd
df = pd.DataFrame({'Age': [30, 20, 22, 40, 32, 28, 39],
'Color': ['Blue', 'Green', 'Red', 'White', 'Gray', 'Black',
'Red'],
'Food': ['Steak', 'Lamb', 'Mango', 'Apple', 'Cheese',
'Melon', 'Beans'],
'Height': [165, 70, 120, 80, 180, 172, 150],
'Score': [4.6, 8.3, 9.0, 3.3, 1.8, 9.5, 2.2],
'State': ['NY', 'TX', 'FL', 'AL', 'AK', 'TX', 'TX']
},
index=['Jane', 'Nick', 'Aaron', 'Penelope', 'Dean',
'Christina', 'Cornelia'])
print(df.dtypes)
df['Age'] = df['Age'].astype(str)
print(df.dtypes)
C:\python\pandas examples>python example.py
Age int64
Color object
Food object
Height int64
Score float64
State object
dtype: object
Age object
Color object
Food object
Height int64
Score float64
State object
dtype: object
C:\python\pandas examples>
Change Data Type for one or more columns in Pandas Dataframe
minify code